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Everyday
technologies are
critically reliant on
mastering materials
lifecycles
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Mastery depends on understanding of complex
synthesis pathways...
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Mastery depends on understanding of complex
synthesis pathways...




...and degradatlon behavior in real-world
esxtreme enwronments

' Image Credit: SSA / ESAT .- |



...and degradation behavior in real-world extreme
environments.

Collision cascade in borosilicate glass

D.A. Kilymis et al. ] Non-Cryst Solids. 432, 354-360 (2016). NREL | 6



My research aim is
an ontology of the
materials lifecycle:

“A systematic mapping of
data to meaningful semantic
concepts...” across spatial
and temporal scales

Quote adapted from:
https://blog.palantir.com/ontology-finding-meaning-

in-data-palantir-rfx-blog-series-1-399bd1a5971b Kalidindi et al. Ann. Rev. Mater. Res. 45: 171-193. (2015). NREL | 7




Unknown Parameter Space

Complementary
Experiments

Autonomous T L
science plays an ~ l | | |

EXPERIMENT
DESIGN [

Microstructure Crystallography Dynamics Electronic Structure
0 . Morphology Phase Phase Optical Properties
I m p O rta nt ro I e I n Interfaces Orientation Maps Transformations
Porosity Chemical Ordering Nucleation & Growth

Defects Strain

(e

developing and reaTuRE

EXTRACTION

harnessing this
O ntO I O gy — Computer Vision Statistical Analysis

Machine Learning
KNOWLEDGE
DISCOVERY |
Model el ; i
Representation | +_|_+

Known

Spurgeon et al. Nature Mater, 20(3), 274-279. (2021). NREL | 8




Understanding
Materials Synthesis




Epitaxial integration of semiconductors and oxides

is a challenge for emerging devices

Top-down epitaxial layer transfer Bottom-up epitaxial growth
I

Complex oxide materials Tools

* Sensors (1)MOCVD

* Energy harvesters (2)MBE

O Memory (3) PLD

* Transducers
IlI-N materials

* High-power devices
e Ultraviolet—visible photonics
* Radio-frequency electronics

I1I-V materials
Methods

(1) Chemical lift-off
(2) Mechanical lift-off
(3) Optical lift-off

(4) 2D assisted lift-off

Techniques

(1) Metamorphic growth

(2) Lateral overgrowth

(3) Geometrically defined growth

(4) vdW and remote epitaxial growth

Kum et al. Nature Electron. 2, 439-450 (2019). NREL | 10



Tailored materials design requires direct local

probes of structure and chemistry

Functional Thin Films for Energy Applications

Site Specific
Metrology

STEM

IS ~1cm
Focused lon Beam

Spurgeon et al. Chem Mater, 28.11. 3814-3822. (2016). NREL | 11



Electron microscopy can richly inform lifecycle

models to achieve predictive control

Structure Chemistry
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Imaging Diffraction Spectroscopy

Du et al. Phys Rev B 2, 094602. (2018). | Popel et al. ACS Appl Mater Int. 12, 39781. (2020). | Spurgeon et al. PNAS 116, 17181. (2019). NREL | 12



The Challenge
Imaging parameters
strongly affect the

representation of an
object in data

Beam

Sample

i
Convergence
Angle (a)

Collection
Angle (B)
4

HAADF ADF BF

Spurgeon. (2020). DOI:10.48550/arXiv.2001.00947

ADF HAADF

HAADF
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The Task
Classify
microstructural

features using
limited examples

Original image

Low Noise sensitivity

High

Gauss. Filt. + Otsu Adaptive mean

Segmentation

Clustering

Akers et al. (2021). npj Computational Materials, 7(1), 187.

M0

fyngeden Buipqe

by

NREL

14



Few shot learning uses limited prior knowledge to

classify features in discovery scenarios

a Original image

e Segmented image d

Akers et al. (2021). npj Computational Materials, 7(1), 187.

Fractured image [
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Careful pre-processing is needed for best model

performance

Without Contrast Leveling Adaptive Histogram Equalization (CLAHE) With CLAHE
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Doty et al. (2022). Computational Materials Science, 203, 111121.



We can rapidly classify atomic motifs in data to
understand phase distributions

Original HAADF Image Support Sets Segmented Image Pixel Fraction

Akers et al. (2021). npj Computational Materials, 7(1), 187. NREL | 18



Such a model can easily be applied to different
synthesis tasks

Original HAADF Image Support Sets Segmented Image Pixel Fraction

LAY Background

[ w/¥ Y}

(EEA On edge

Akers et al. (2021). npj Computational Materials, 7(1), 187. NREL | 19



We can ultimately extract materials descriptors in a
faster and more reproducible manner

Manual Analysis : . Sy - - v , : - o Few-Shot
10 minutes . P z i ﬂ L Task 2

8 seconds

Doty et al. (2022). Computational Materials Science, 203, 111121. | Akers et al. (2021). npj Computational Materials, 7(1), 187. NREL | 20



Describing Disorder




Controlling materials degradation is critical for

electronics and sensors in extremes

How does interface configuration affect
radiation-induced disorder in devices?

|
]
charged interfacial
|
efects v
r

DO NOT disrupt
neutral planes ——

in (100) orientation G

x  during irradiation
1%
1.4
% defects are created
% atthe interface

-2

charged interfacial
defects
DO disrupt
charged planes in
(110) erientation

+
. during irradiation

+ ﬁ
© defects are created

+  atthe interface
-f2

il 41
il

w
=
[=]
* *

Aguiar et al. J. Mater. Res. 29(16), 1699—-1710 (2014). | Spurgeon. Curr. Opin. Solid. State Mater. Sci. 24(6), 100870 (2020). | Image: SSA / ESA NREL | 22



Spurgeon, S. R. et al. Adv. Mater. Interfaces. 2020, 7(8). 1901901944.
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Filtered, Aligned HRTEM Time-Resolved Fourier Filtering

1 Hr Irradiation Matthews et al. (2021). Nano Letters, 21(12), 5353-5359.



We can quantify the loss of crystallinity through

statistical analysis of time series data

ion beam

1

08

experimental area 06

Total Bragg Filter Amplitude

Displacement [g .'.

12 |I|
1
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Time (min)

Matthews et al. (2021). Nano Letters, 21(12), 5353-5359. NREL | 26



More recently, we have been developing unique

order descriptors based on graph analytics

Raw HAADF Image Network Graph Cluster Analysis

Disordered Region

2%

Ter-Petrosyan et al. Proc. Thirty-Seventh Conf. on Neural Information Processing Systems (NeurlPS). (2023). DOI:10.48550/arXiv.2311.08585 NREL | 27



Multi-modal graphs effectively classify radiation damage signatures

Prior to Irradiation Post-Irradiation

Community

Community
Detection

Agglomerative
Clustering

Agglomerative
Clustering

Few-shot
Classification

3
=
e
2
1
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5
3

Ter-Petrosyan et al. In preparation. NREL | 28



Such models reveal changes in composition associated with irradiation

Prior to Irradiation Post-Irradiation
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Such models reveal changes in composition associated with irradiation

Prior to Irradiation Post-Irradiation
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Toward Autonomous
Experimentation




We have built an autonomous microscope platform

based on few-shot and other ML models

(a) Direction Level

(b) Communication Level

(c) Hardware Level

| |
[ 1 1
initialize data + metadata - __ N
HubEM > i Cloud archive | beam scanning
archive data + metadata g : 4
I— Session config data i |— Curated library ] _
|—M tadat |—St dard method i =dnen
etadata : andard methods
instructions 1 ’ |
P—
data 2
- stage
. PyJEM Wrapper | < P
WizEM control <
= dat il
; ata
Task selection relay :

|— Model parameters . data detectors 4

R P

features GMS Python
control "

Olszta et al. Microscopy and Microanalysis, 28 (5), 1611-1621. (2022).

NREL | 32



This platform
enables intelligent
closed-loop

experiments and
statistical analyses

Olszta et al. Microscopy and
Microanalysis, 28 (5), 1611-1621.
(2022).

(a) Execute pre-defined search grid

Open-loop
Control

l raw images

(b) Perform task-based classification

Feature I -
Classification

Separate particles Separate particle -- .

from background types

l feature maps + coordinates

(C) Execute adaptive search grid and measure statistics
- Plate objects
Closed-loop . .
Control Rod objects
--- Background objects

NREL | 33




75 RANSMISSION ELECTRON MICROSCOPE
AUTOEM)
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An Aside: Design of automated systems is

challenging but it is getting easier

FJEM [ PYJEM  Pusic [l Mettcations Y Fork 4 o7 s 28

* Electronic optical system control :
Beam control, detector In / Out, magnification
change, brightness change, etc..

ode (D) msss 7 11 Pulraguests 1

e Stage control :
Absolute position movement, Relative position
movement, Piezoelectric movement, etc.

* Image acquisition :
STEM or TEM image acquisition, image storage
type change, resolution specification, etc.

* Auto function :
Auto Focus, Auto Contrast Brightness, Auto

Get the Stigmator, etc.
PyJEM API!

https://github.com/PyJEM/PyJEM  NREL | 35



We can build large libraries of synthesis and
degradation pathways

0052 0044 0054 0051 0045

cluster assortativity; 0,425 cluster 2ssartativity; 0,400 cluster assortativity; 0,253 cluster assortativity; 0,452

Ter-Petrosyan et al. Proc. Thirty-Seventh Conf. on Neural Information Processing Systems (NeurlPS). (2023). DOI:10.48550/arXiv.2311.08585
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What is next?

NREL is leading a
S14M recapitalization
of our electron
microscopy center,
with a focus on in situ
and autonomous
science
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What is next?

NREL will be home to
a new autonomous
electron microscope
platform built around
dynamic and adaptive
experiments

Autonomous

Multi-Modal

—— Adaptive

Intelligent

AM3
The Autonomous Multi-Modal Microscope
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Autonomous science is revealing
previously hidden materials
lifecycles and transforming the
design of clean energy systems

For more information on electron
microscopy @ NREL, visit:
https://tinyurl.com/z8ryk4y3 Data Decision

Science Automaih Science

Al-Accelerated
Materials Discovery

NREL/PR-5K00-91894
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